
CSE 451: Operating Systems

Winter 2012

I/O System

Gary Kimura

2

What’s Ahead

• Principles of I/O Hardware

• Structuring of I/O Software

• Layers of an I/O System

• Operation of an I/O System

3

Hardware Environment

• Major components of a computer system:

CPU, memories (primary/secondary), I/O system

• I/O devices:

– Block devices – store information in fixed-sized blocks;

typical sizes: 128-4096 bytes

– Character devices – delivers/accepts stream of characters (bytes)

• Device controllers:

– Connects physical device to system bus (Minicomputers, PCs)

– Mainframes use a more complex model:

Multiple buses and specialized I/O computers (I/O channels)

• Communication:

– Memory-mapped I/O, controller registers

– Direct Memory Access - DMA

4

I/O Hardware - Single Bus

CPU Memory
Video

Controller

Keyboard

Controller

Floppy

Controller

Disk

Controller

System bus

Monitor Keyboard Floppy

 drive

Disk

 drive

5

I/O Hardware - Multiple Buses

Video

controller

Network

controller

IDE disk

controller

USB

interface

keyboard mouse

CPU PCI bridge/

memory

controller

Memory

Cache

SCSI

controller

SCSI disk

SCSI disk

SCSI disk

PCI bus

USB bus

SCSI bus

Memory bus

6

Diversity among I/O Devices

The I/O subsystem has to consider device
characteristics:

• Data rate:

– may vary by several orders of magnitude

• Complexity of control:

– exclusive vs. shared devices

• Unit of transfer:

– stream of bytes vs. block-I/O

• Data representations:

– character encoding, error codes, parity conventions

• Error conditions:

– consequences, range of responses

• Applications:

– impact on resource scheduling, buffering schemes

7

Organization of the I/O Function

• Programmed I/O with polling:
– The processor issues an I/O command on behalf of a process

– The process busy waits for completion of the operation before

proceeding

• Interrupt-driven I/O:
– The processor issues an I/O command and continues to execute

– The I/O module interrupts the processor when it has finished I/O

– The initiator process may be suspended pending the interrupt

• Direct memory access (DMA):
– A DMA module controls exchange of data between I/O module and

main memory

– The processor requests transfer of a block of data from DMA and is

interrupted only after the entire block has been transferred

8

Flow of a blocking I/O request

1. Thread issues blocking read()

system call

2. Kernel checks parameters; may

return buffered data and finish

3. Idle device: Driver allocates kernel

buffer; sends command to controller

4. Busy device: Driver puts I/O request

on device queue

5. Thread is removed from run queue;

added to wait queue for device

6. Interrupt occurs; handler stores

data; signals device driver to

release first thread on device

wait queue

7. Handler takes next request from

queue, allocates kernel buffer;

sends command to controller

8. Awoken thread is in device

driver, cleans up

9. Thread resumes execution at

completion of read() call

9

Flow of an asynchronous I/O request

1. Thread issues readasync() system

call with synchronization object

2. Kernel checks parameters; may

return buffered data immediately,

signal synchronization object and

finish

3. I/O request is scheduled (initiated

on hardware or queued in device

driver if busy)

4. Thread returns from readasync()

5. Thread continues, and eventually

issues wait(synchronization object)

6. Interrupt occurs, driver retrieves

data from hardware if necessary

(PIO)

7. Interrupt code starts next

request, if any

8. Interrupt code calls

wakeup(synchronization object)

9. Interrupt code returns

Only a slight difference from

blocking call: use process’s

synchronization object

But what code really can run

during interrupts?

10

Interrupt-time code

• Kernel/user interruptions occur at arbitrary points

– Inconsistent data (linked lists not set up correctly, data

structures in transition)

– What’s the least that can be counted on?

– MM? No.

• Kernel needs to deliver an environment where

efficient/effective processing can be performed

– Unix: scheduler is the only thing available. The interrupt

code will wakeup() the thread that is awaiting service. Some

drivers will be able to start next request at this time.

– Windows: scheduler is available but also means for

enqueueing DPC/APC (Deferred Procedure

Call/Asynchronous Procedure Call)

11

DPC/APC – What?

• An architecture for executing a body of code in a

clean environment without a context switch.

• Kernel has notion of IRQL (I/O Request Level).

– Interrupts from hardware have certain priorities: timer, disk,

keyboard/mouse

– IRQL is used to mask lower levels so that timely/correct

responses can be made; interrupts with lower priority are

held off until IRQL is lowered

– Control is arbitrated through PIC

– IRQL is union of hardware and software interrupt events:

DPC and APC are lower priority than HW interrupts

– KeRaiseIrql() and KeLowerIrql()

12

IRQLs

• Example:

– Power Fail

– Inter-processor interrupt

– Clock

– Device N

– Device N-1

– ..

– Device 0

– DPC/Dispatch

– APC

– Passive (aka running user code)

13

DPC – deferred procedure call

• A DPC procedure is called in an environment that

allows calling scheduler primitives (wake()), access

timers, reschedule when quantum expires

• Executes in the current thread when IRQL is lowered

sufficiently.

• Used by device drivers to minimize the amount of

work performed during H/W interrupt. Why?

• Cannot block! (not touch paged-out memory, take

spinlocks, etc)

14

APC – Asyncrhonous Procedure Call

• “Lower priority interrupt” than DPC. Only executes

when no other pending DPCs exist

• Can execute at “current” thread or “that” thread.

• Has full range of kernel services (I/O, MM,

synchronization, etc).

15

Unix I/O Device Interrupt Processing

1. Interrupt occurs, interrupt handler saves state

2. Wakes up thread that was waiting on I/O

3. Selects next request to process

4. Wakes up corresponding thread A

5. Returns from interrupt

6. …

7. Context switch to thread A

8. Issue commands to device

9. Waits on completion

10.Context switch to …

16

Windows I/O Device Interrupt Processing

1. Interrupt occurs, interrupt handler saves state

2. Enables DPC

3. Returns from interrupt

4. DPC executes

5. Wakes up thread waiting on I/O

6. Enables APC in current thread

7. Exits DPC

8. APC executes

9. Selects next request to process

10.Issue commands to device

11.Exits APC

12.NO CONTEXT SWITCHES!

17

Principles of I/O Software

• Layered organization

• Device independence

• Error handling

– Error should be handled as close to the

hardware as possible

– Transparent error recovery at low level

• Synchronous vs. Asynchronous transfers

– Most physical I/O is asynchronous

– Kernel may provide synchronous I/O system calls

• Sharable vs. dedicated devices

– Disk vs. printer

Structuring of

I/O software

1. User-level software

2. Device-independent

OS software

3. Device drivers

4. Interrupt handlers

18

Interrupt Handlers

• Should be hidden by the operating system

• Every thread starting an I/O operation should block

until I/O has completed and interrupt occurs (OS with

no async system calls)

• Interrupt handler transfers data from device

(controller) and un-blocks process

19

Device Driver

• Contains all device-dependent code

• Handles one device

• Translates abstract requests into device commands

– Writes controller registers

– Accesses mapped memory

– Queues requests

• Driver may block after issuing a request:

– Interrupt will un-block driver (returning status information)

20

Device-independent I/O Software

Functions of device-independent I/O software:

• Uniform interfacing for the device drivers

• Device naming

• Device protection

• Providing a device-independent block size

• Buffering

• Storage allocation on block devices

• Allocating and releasing dedicated devices

• Error reporting

21

Layers of the I/O System

• User-Space I/O

Software

• System call libraries

(read, write,...)

• Spooling

– Managing dedicated I/O

devices in a

multiprogramming system

– Daemon process,

spooling directory

– lpd – line printer daemon,

sendmail – simple mail

transfer protocol

Layer

User process

Device-independent

software

Device drivers

Interrupt handlers

Hardware

I/O

request
I/O

reply

I/O functions

I/O calls, spooling

format I/O

Naming, protection

buffering, blocking

Setup registers,

Check status

Setup registers,

Check status

Wakeup driver

Perform I/O op.

22

Application I/O Interfaces

The OS system call interface distinguished device

classes:

• Character-stream or block

• Sequential or random-access

• Synchronous or asynchronous

• Sharable or dedicated

• Speed of operation

• Read/write, read only, write only

